Best practice in spray seal application

Joe Pickering
Fulton Hogan, Mount Isa
• Why priming - the difference between prime and primerseal
• Primer products – advantages/disadvantages
• The way forward
• Case study
• Summary
A **prime** is an application of a primer to a prepared granular base. It usually consists of:

- a bitumen and cutter oil or
- specially formulated bitumen emulsion primer and
- is placed without a cover aggregate

Prime:

- AMCOO, AMCO, AMC1 may be used
- generally requires a light prime (lesser bitumen to cutter ratio) to facilitate greater penetration of the binder into the base.

Source: Austroads Part 4K, Seals (2009)
A **primerseal** is an application of primerbinder sprayed onto a prepared crushed rock or gravel pavement surface and covered with a layer of aggregate. It allows:

- immediate trafficking and
- permits a delay in placing of the final surfacing.

Primerseal:

- AMC3, AMC4, AMC5 may be used.
- may be preferred on a road section to be constructed under traffic (i.e. a resurfacing or rehabilitation project) prior to overlaying
- warrants a heavier prime (i.e. greater bitumen to cutter ratio) – retaining stone

Source: Austroads Part 4K, Seals (2009)
Why priming?

prime and seal \neq primerseal
Cutting agent is needed to temporarily reduce the viscosity of the binder. This allows penetration and bonding into the underlying base. This can be achieved by using:

- cutback bitumen – a blend of conventional bitumen (typically C170) and a cutting agent i.e. kerosene (blended to the desired ratios)
- bitumen emulsion – dispersion of bitumen binder and water to create an emulsified solution (applied at the desired blend ratios).
Benefits
• Relatively simple application and good penetration to the base
• traditional cutback bitumen has been widely accepted.

Backside:
• undesirable curing times
• requires a minimum of 5 days (for primer sealing a minimum of 3 months)
• curing time is depending on prevailing weather conditions
• if the overlying material is placed over the prime/primer seal prior to curing, the volatile material can deteriorate the overlying bituminous material (stripping, bleeding, etc.).
Primer products - cutback

Bleeding seal using 5 parts cutter - 2011
Primer products - cutback

Sealing too early
Hydrocarbon had been locked into seal - 2009

Road temperature 64 °C – 2014
Customer added 2% cutter

www.fultonhogan.com
A typical sealing application 40 years ago was:
• prime AMCO or AMCOO (depending of texture of the base surface)
• sand cover prime
• open it to traffic for around 1 month or longer depending on pavement design
• clean cover of repair any pavement failures
• seal two coat.

The cutter was Jet A fuel or power kerosene many years ago.
Currently:

- using low flash point kerosene (widely used) - some states still use power kerosene (Jet A1)
- low flash point kerosene has higher oil content - takes longer for the kerosene to escape in the atmosphere, i.e. longer curing time
- time pressure on jobsites may lead too early cover – leads to improper curing and subsequently stripping.
The future for prime is emulsion based:

- cures in less than 12 to 24 hours (depending on weather)
- reducing delays to paving operations and seal operations
- leads to savings in the final construction cost
- reduction in the level of hydrocarbon solvent emitted
- no compromise in pavement penetration and strength
- eliminated risk that the hydrocarbon being locked in between bitumen coats.

Emulsion based prime needs:

- to have low viscosity properties for surface penetration, coating of fine particles, sealing surface pores and bonding between pavement layers
- to be stored and handled properly
- to be periodically agitated if stored for longer term to avoids settlement.
The way forward

Emulsion prime - local street
EMULPRIME CPE:
• is a proprietary all purpose formulated bitumen emulsion
• designed to achieve penetration with most road pavement materials
• suitable for priming concrete pavements such as bridge decks
• contains a reduced level of hydrocarbon solvent
• designed to cure quickly, enabling construction vehicle access generally within 2-4 hours under fine weather conditions
• suitable for priming cool and damp pavements
• non-flammable
• reduces risk of pollution due to washout unforeseen rainfall
• reduces risk of flushing, caused by trapped solvent
• reduces hydrocarbon emissions
• typical application rate is 0.6 to 1.1 L/m² on unbound sub-grade, or stabilized pavements.
Summary

- Primer and primerseal typically consists hydrocarbon products
- Requires curing time otherwise carries risk
- Cost effective alternative is an emulsion based primer