REVETMENT WORKS - MUSKERS BEACH

Presented by:
Arvind Singh
Coordinator Infrastructure Projects, Livingstone Shire Council
Chris Lancaster
Geofabrics Australasia Pty. Ltd.
Presentation Topics

1. Background
2. Site Layout and Events Effect
3. Investigations and Design Methodology
4. Scope of Works
5. Design Approach
6. Design Criteria, parameters and method used
7. State Agency Approvals
8. Project Budget
9. During Construction - Photos
10. Project After Completion - Photos
11. Construction Issues
12. Conclusion & Questions
Background

• Cyclone Dylan early in 2014.
• This has been a site issue since 2004.
• Muskers Beach Landholders Group (NMBLG)
• NMBLG engaged a consultant engineer
• Consultation with relevant State agencies and coastal specialists
• Geotextile revetment wall with a design-life of approximately 25 years.
Site Layout
Events Effect

No. 14 Reef St

No. 52 Reef St
Investigation & Design Methodology

• **Observed trend in vicinity of dwellings**
 – Beach Survey 2006 - 2014

• **Typical Coastal Management Options**:
 – Do nothing
 – Retreat
 – Beach Nourishment
 – Rock Revetment
 – Geotextile Revetment
Investigation & Design Methodology

Option Review

• Rock Wall
 – High energy impact structures
 – Produce beach changing dynamics
 – Design requirements result in deeper toe elevation; rock quantities >13,000 m³
 – Not preferred or supported by DILGP

• Sand-filled geotextile containers
 – The ELCOROCK® shoreline protection system
 – The geotextile containers are made from Texcel®, a durable staple fibre geotextile
 – Provides a cost-effective alternative to traditional coastal erosion
 – Supported by DILGP and EHP
Investigation & Design Methodology
Investigation & Design Methodology
Investigation & Design Methodology

Preferred Option

• Combination of Geotextile Revetment & Nourishment
• Construct geotextile revetment adjacent to current dune scarp
• Natural beach with an engineered structure to resist major erosion during storm events
Investigation & Design Methodology

• **Pros**
 – Recognised best practice
 – Complements natural coastal processes
 – Beach aesthetics
 – Greatly extended geotextile product life

• **Cons**
 – Revetment may be exposed during storm events
 – Would require ongoing renourishment to resist vandalism & UV rays
Scope of works

Brief project scope of works:

1. Design and Certification of Revetment Wall
2. Earthworks
3. Revetment Wall - Geotextile bags and underlay
4. Sand for Revetment Wall Bag Fill
5. Revetment Wall Containers and Installation
6. Nourishment Works to Wall
7. Landscaping / Revegetation
8. Erosion & Sediment / Stormwater Control
Revetment Wall Design Approach

Design Considerations

• DILGP provisions close to the property boundary
• Alignment consistent with natural beach shape (DILGP)
• EHP requirement for protective structure support for softer sand fill containers, nourishment

Design Events

• Protection Act 1995 details seawalls are to be designed corresponding to 2% AEP

Design Certification

• Designed in-house (Stephen Linnane) and RPEQ certification by ICM
Design criteria, parameters and methods used

Design Life

• Adopted design life of approximately 25 years

Offshore Storm Characteristics for design events

• Datum – all reference to RL in this report is in metres above Australian Height Datum (AHD)
• Tides (Qld Tide Tables - Maritime Safety)
• Storm Tide, wave period and direction – Connell Wagner, 2003 adjusted for Mean High Water Springs (MHWS) since 2003
• Projected Sea Level Rise – adopted 0.3 m from Qld Coastal Plan
• Wave Height – J Piorewicz, 2013 - analysed wave data sourced from Emu Park buoy (Datawell Waverider)
• Duration – Capricorn Beaches BPA, 1979
Design criteria, parameters and methods

Determine Suitability of Seawall

- Coastal sediment transport (cross-shore & long-shore)
- Erosion / Accretion Patterns
- Alignment – consistent with natural beach shape
- End detail – revetment wall extended landwards from the active scarp
- Nourishment / beach scraping – nourishment to the revetment wall sourced from the intertidal zone below MHWS
- Site constraints – project requires Development Application /Approval
Design criteria, parameters and methods ……

Storm Characteristics at Structure

<table>
<thead>
<tr>
<th>Description</th>
<th>2014 conditions</th>
<th>2050 conditions</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storm surge (50yr ARI)</td>
<td>3.4 m AHD</td>
<td>3.6 m AHD</td>
<td>Connell Wagner, 2003 (Cawarral Ck)</td>
</tr>
<tr>
<td>Sea Level Rise</td>
<td>0</td>
<td>0.3 m AHD</td>
<td></td>
</tr>
<tr>
<td>Wave setup</td>
<td>0.5 m AHD</td>
<td>0.5 m AHD</td>
<td>S-Beach model</td>
</tr>
<tr>
<td>Local wind setup</td>
<td>0.2 m AHD</td>
<td>0.2 m AHD</td>
<td>S-Beach model</td>
</tr>
<tr>
<td>Wave runup</td>
<td>0.3 m AHD</td>
<td>0.4 m AHD</td>
<td>Empirical relationship</td>
</tr>
<tr>
<td>Overtopping (4.5m AHD at crest)</td>
<td>171 l/s/m</td>
<td>1626 l/s/m</td>
<td></td>
</tr>
<tr>
<td>Overtopping (4.5m AHD at 4m)</td>
<td>43 l/s/m</td>
<td>407 l/s/m</td>
<td>EurOTop (concrete slope with reduction factor 0.75)</td>
</tr>
<tr>
<td>Overtopping (5.0m AHD at crest)</td>
<td>39 l/s/m</td>
<td>835 l/s/m</td>
<td>Allowance for reduction by 75% for 4m from crest Limit for damage to grassed areas 50l/s/m Limit for pedestrian access 0.1 - 10l/s/m</td>
</tr>
<tr>
<td>Overtopping (5.0m AHD at 4m)</td>
<td>10 l/s/m</td>
<td>209 l/s/m</td>
<td></td>
</tr>
</tbody>
</table>
Design criteria, parameters and methods

Design (Refer table)

- Size of Sandfill Geotextile Containers Units for stability – 2.5 m³/5T
- Recommended Crest: 4.5 m AHD
- S-Beach – storm induced beach change model analysis used
- Recommended Toe: 1.3 m AHD (or lower)
State Agency Approval Process

- Development Application (DA) for prescribed tidal works in a coastal management district
- Concurrence Agencies – DGLIP, EHP & DNRM
- Marine Parks Act 2004
- Native Title & Cultural Heritage
Project Budget

Project Budget: $1.50 million
Project Completion Cost: $1.45 million
• Construction: 96%
• Design: 3%
• Project Management: 1%
Geofabrics Australasia Pty. Ltd.

• Who are we – a supplier & manufacturer of geosynthetic products – various range of products featuring in most construction field segments – Roads, Rail, Mining, Buildings & Ports/Coastal Protection even Golf & Sports!!
• The Elcorock & Texcel range of geotextile material is a staple fibre – either a polyester or a polypropylene or a combination of both.
• With 2 manufacturing plants in Australia, with ElcoRock & Texcel made at Ormeau on the Gold Coast.
• Our Bidim range of geotextiles is manufactured in Albury.
Geofabrics Australasia Pty. Ltd.

• Who are we –
• Geofabrics are the largest manufacturer and supplier throughout Australasia of geotextiles.
• Established in Australia 1977.
• April 2015 – GA merged with Maccaferri Australia & NZ
• Currently employ approx. 220 people.
• International presence.
So what is ELCOROCK –

ELCOROCK® is a shoreline protection system utilising robust geotextile containers designed to be filled with sand (or other infill material), that are then placed to form a stable, durable structure.

The versatility and durability of the ELCOROCK® containers allow construction of a wide variety of coastal structures – including groynes, walls, reef structures and other applications for marine and inland waterways.
So what is ELCOROCK –

ELCOROCK® is a world-leading system, with structures built on open beaches over 20 years ago surviving Australia’s harsh coastal environment. The ELCOROCK® system is supported by extensive research, including design methods, durability reports and environmental analysis.

The ELCOROCK® shoreline protection system is an alternative building material to traditional coastal methods such as concrete, rock armour, steel or timber. Geofabrics supports the ELCOROCK® system with research, specialist installation equipment and design assistance.
So what is ELCOROCK –

Geosynthetic Sand Containers – various sizes
Geofabrics Australasia Pty. Ltd.

• So how do we design ELCOROCK –
• GA can offer “design suggestions”.
• GA can put you in touch with design engineers.
• GA will support you if you wish to design your own wall or groyne.
• GA offer on site assistance to you or your contractor.
• Most design suggestions come at “no cost” incl. the support & on site assistance.
So what would a standard design ELCOROCK wall look like?

Geofabrics Australasia Pty. Ltd.

![Diagram of ELCOROCK wall dimensions and sections](image-url)
Geofabrics Australasia Pty. Ltd.

- So onto Musker's Beach @ Zilzie (Emu Park)
- We got involved in this project some ten years ago.
- We were approached by some local land owners back then.
- We assisted council with design.
- Located a RPEQ for the council – ICM
- In late 2015 Hall Contracting was awarded this project.
- Some 600m long - 5 bags deep / high wall.
Pre-Construction -
Geofabrics Australasia Pty. Ltd.

Pre-Construction -
Geofabrics Australasia Pty. Ltd.

Construction -
Construction -
Geofabrics Australasia Pty. Ltd.

Construction -
Construction -

Geofabrics Australasia Pty. Ltd.

[Image of construction equipment and workers]
Geofabrics Australasia Pty. Ltd.

Construction -
Construction -
Geofabrics Australasia Pty. Ltd.

Construction -
Geofabrics Australasia Pty. Ltd.

Construction -
Construction Completed

Thick Jute Mat placed over the site along with cube stock & a watering system.
• Construction Issues –
• Sand supply issue – not a “free draining material”??
• So what is “free draining”?
• A material should allow water to pass through the sand & out through the bag whilst filling – allows very good compaction of the sand within the container bag.
• The original material had a very fine silt component that caused “clogging”.
• Solution: new material was sourced – coarser sand.
Geofabrics Australasia Pty. Ltd.

- Construction issues –
- Had some issues with the containers as well
- Draw strings sewn into the containers
- Solution: GA replaced draw strings at no cost
- Some containers were “incomplete” with sewing
- Solution: GA replaced the 2 containers at no cost
- Livingstone SC required that jute mat cover steel pins not be used, was not specified though
- Solution: GA & Halls replaced the standard jute steel pins with biodegradable pins at no extra cost
Construction Issues

• Complaint from local residents regarding sand blown
• Stormwater drainage
• Operations on days when persistent on-shore wind conditions are experienced
• Seawall return profile
• Community consultation
Construction Issues and Solutions
Questions??